Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
J Pharm Biomed Anal ; 224: 115174, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2229930

ABSTRACT

Lipid encapsulated messenger RNA (LNP mRNA) has garnered a significant amount of interest from the pharmaceutical industry and general public alike. This attention has been catalyzed by the clinical success of LNP mRNA for SARS-CoV-2 vaccination as well as future promises that might be fulfilled by the biotechnology pipeline, such as the in vivo delivery of a CRISPR/Cas9 complex that can edit patient cells to reduce levels of low-density lipoprotein. LNP mRNAs are comprised of various chemically diverse molecules brought together in a sophisticated intermolecular complex. This can make it challenging to achieve thorough analytical characterization. Nevertheless, liquid chromatography is becoming an increasingly relied upon technique for LNP mRNA analyses. Although there have been significant advances in all types of LNP mRNA analyses, this review focuses on recent developments and the possibilities of applying anion exchange (AEX) and ion pairing reversed phase (IP-RP) liquid chromatography for intact mRNAs as well as techniques for oligo mapping analysis, 5' endcap testing and lipid compositional assays.

2.
Journal of pharmaceutical and biomedical analysis ; 2022.
Article in English | EuropePMC | ID: covidwho-2026996

ABSTRACT

The COVID-19 pandemic necessitated the emergency use authorization (EUA) of several new therapeutics and vaccines. Several monoclonal antibodies (mAbs) were among those authorized for use, and they have served a purpose to provide passive immunity and to help minimize dangerous secondary effects in at-risk and hospitalized patients infected with SARS-CoV-2. With an EUA submission, scientific data on a drug candidate is often collected near simultaneously alongside drug development. In such a situation, there is little time to allow misguided method development nor time to wait on traditional turnaround times. We have taken this dilemma as a chance to propose new means to expediting the chromatographic characterization of protein therapeutics. To this end, we have combined the use of automated, systematic modeling and ultrashort LC columns to quickly optimize high throughput RP, IEX, HILIC and SEC separations for two COVID-19-related mAbs. The development and verification of these four complementary analytical methods required only 2 days of experimental work. In the end, one chromatographic analysis can be performed with a sub-2 minute run time such that it is feasible to comprehensively characterize a COVID-19 mAb cocktail by 4 different profiling techniques within a 1-hour turnaround time.

SELECTION OF CITATIONS
SEARCH DETAIL